PHYSICS

Table 6.2 Typical kinetic energies (K]

| Objet | Mass(kp) | Speed(ms) | K(@) |
Car 25

2000 6.3%10°
Running athlete 70 10 3.5%x10°
Bullet 5x107 200 10°
Stone dropped from 10 m 1 14 10°
Rain drop at terminal speed 3 55)0™ 9 1.4x107
Air molecule =107 500 =107

object can do by the virtue of its motion. This
notion has been intuitively known for a long time.
The kinetic energy of a fast flowing stream
has been used to grind corn. Sailing
ships employ the kinetic energy of the wind. Table
6.2 lists the kinetic energies for various
objects,

p Example 6.4 In a ballistics demonstration
a police officer fires a bullet of mass 50.0 g
with speed 200 m s'! (see Table 6.2) on soft
plywood of thickness 2.00 em. The bullet
emerges with only 10% of its initial kinetic
energy. What is the emergent speed of the
bullet ?

Answer The initial kinetic energy of the bullet
is mu?/2 = 1000 J. It has a final kinetic energy
0f0.1x1000 = 100 J. If v, is the emergent speed
of the bullet,

1 =
:muf=lﬂﬂ-.]
_ [2x1004
YF =y 0.05kg
=63.2ms"!

The speed is reduced by approximately 68%
(not 90%). 4

6.5 WORK DONE BY A VARIAELE FORCE

A constant force is rare. It is the variable force,
which is more commonly encountered. Fig. 6.2
is a plot of a varying force in one dimension.

If the displacement Ax is small, we can take
the force F(x) as approximately constant and
the work done is then

AW =F[x) Ax

This is illustrated in Fig. 6.3(a). Adding
successive rectangular areas in Fig. 6.3(a) we
get the total work done as

Xy
WsZF[x Jhx (6.6)

X
where the summation is from the initial position
x, to the final position x,

If the displacements are allowed to approach
zero, then the number of terms in the sum
increases without limit, but the sum approaches
a definite value equal to the area under the curve
in Fig. 6.3(b). Then the work done is

j . X

W= Ilm E
Ax — Fl:x}&x

Xy

x

= [ Fix)dx
xp

where ‘lim’ stands for the limit of the sum when

Ax tends to zero. Thus, for a varying force

the work done can be expressed as a definite

integral of force over displacement (see also

Appendix 3.1).

(6.7)
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Fig. 6.3 (a} The shaded rectangle represents the
work done by the varying force Flx), over
the small displacement Ax, AW = Fla Ax.
(b} adding the areas of all the rectangles we
find that for Ax — 0, the area under the cuorve
is exactly egual to the work done by Flx.

P Example 6.5 A woman pushes a trunk on
a railway platform which has a rough
surface. She applies a force of 100 N overa
distance of 10 m. Thereafier, she gets
progressively tired and her applied force
reduces linearly with distance to 50 N. The
total distance through which the trunk has
been moved is 20 m. Plot the foree applied
by the woman and the frictional force, which
is 50 N versus displacement. Calculate the
work done by the two forces over 20 m.
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Fig. 6.4 Plot of the force F applied by the woman and
the opposing frictional force f versus
displacement.

The plot of the applied force is shown in Fig.
6.4. At x =20m, F =50 N (= 0). We are given
that the frictional force fis |f|= 50 N. It opposes
motion and acts in a direction opposite to F. It
is therefore, shown on the negative side of the
force axis.

The work done by the woman is

W,— area of the rectangle ABCD + area of
the trapezium CEID

: 1 ,

Wy =100x m+5{1m+ 501 %10

= 1000 + 750
=1750J

119

The work done by the frictional force is
W,— area of the rectangle AGHI

W, =(-50) = 20
=—1000J
The area on the negative side of the force axis
has a negative sign. 4
6.6 THE WORK-ENERGY THEOREM FOR A
VARIABLE FORCE

We are now familiar with the concepts of work
and kinetic energy to prove the work-energy
theorem for a wvariable force. We confine
ourselves to one dimension. The time rate of
change of kinetic energy is

dK _d |1 2)
Friaen o

=m—7u
dt

=F v (from Newton's Second Law)

o
dt
Thus
dK =Fdx
Integrating from the initial position (x ) to final
position ( x,], we have

Ky =y
| dxc- | Fax
Ky X

where, K and K_rareﬂ]ellﬂﬂa] and final kinetic
energies corresponding to x, and x .

x5
o By=s f ix

(6.8a)
A
From Eq. (6.7), it follows that
KE-K=W (6.8b)

Thus, the WE theorem is proved for a variable
force.

While the WE theorem is useful in a variety of
problems, it does not, in general. incorporate the
complete dynamical information of Newton's
second law. It is an integral form of Newton's
second law. Newton's second law is a relation
between acceleration and force at any Instant of
time. Work-energy theorem involves an integral
over an interval of time. In this sense, the temporal
(time) information contained in the statement of
Newton's second law Is ‘integrated over’ and is



